

2nd Workshop on Innovative Engineering for Fluid Power: Applications in Aircraft, Vehicles and Energy (Wind, Hydroelectricity and Oil & Gas)

The importance of Marketing & Sales for Innovation in H&P Industry

Luciana Pereira, PhD

Assistant Professor, Center for Engineering, Modeling, and Applied Social Sciences Federal University of ABC. São Paulo, Brazil luciana.pereira@ufabc.edu.br

Innovation in H&P Industry

Why opening a workshop on Innovative Engineering talking about Marketing&Sales?

What is Fluid Power?

Technology of using fluid, either liquid (hydraulic) or gas (pneumatics), to transfer power and energy to create motion

Fluid Power Applications

Aerospace

- Landing gear
- Brakes
- Flight controls
- Motor controls
- Cargo loading equipment

Fluid Power Applications

Energy

- Hydraulic wind turbine
- Lift systems for offshore oil platform
- Subsea hydraulic distribution system
- Hydraulic pumping systems for crude oil

Fluid Power Applications

Industrial

- Metalworking equipment
- Controllers
- Automated manipulators
- Material handling
- Assembly equipment

Fluid Power Applications

Mobile

- Backhoes
- Graders
- Tractors
- Truck brakes
- Suspensions
- Spreaders
- Highway maintenance vehicles

Demands for Innovation in Fluid Power

Making fluid power compact, efficient and effective

- Compact means smaller and lighter for the same function
- Efficient means saving energy
- Effective means clean, quiet, safe and easy-to-use
 Major goals
- 1. Doubling fuel efficiency in current applications
- 2. Expand fluid power use in transportation
- 3. Create portable, un-tethered human-scale fluid power applications
- 4. Ubiquity fluid power that can be used anywhere

Fluid Power Industry Value Chain

iLab@UFABC

Smiling Face Curve

Challenges for Developing Global New Products

Figure 1. Emerging framework for global new product development processes

Differences Among Overseas Markets Lesson 1: Product Requirements

Consumer Preferences

Explicit Attribute

Bucket size, reach

Tacit Attribute

"Rugged" Styling

Delicated and Finesse

'We [in hydraulic excavators] know what different markets want ... it is rationalization of these requirements which is a bigger deal ... For instance, different digging force requirements in the US and Japan create very different ramifications to the structure [of the equipment] and design. What we think of as design solutions may not be possible to manufacture in other plants ... their capabilities are different, suppliers are different ... you need experience in those plants to know the details.'

Differences Among Overseas Plants Lesson 2: Manufacturability

Consumer Preferences

Explicit Attribute

Difference in digging force

Tacit Attribute

Several design choices Manufacturing feasibility

Supplier capabilities

Complex-knowledge dependent on personal experience

Differences Among Overseas Plants Lesson 3: Team Structure

Preferences

Composition

Cross-national

Included subsidiary managers as team members

Differences Among Overseas Plants Lesson 4: Sources of New Product Concept

Preferences

Sources

Headquarters and overseas subsidiaries

Conclusions

- Successful innovations have been the result of a tremendous team effort bringing both Engineering (explicit) and marketing (tacit) perspectives together;
- Proximity of marketing and engineering with university is essential to respond to innovation challenges in fluid power;
- The WIEFP is an example of how Brazilians can collaborate and contribute.

